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ABSTRACT

The positive probability that an estimated moving average process
is nbninvertib1e is studied for maximum likelihood estimation of a
univariate process. Upper and ldwer bounds for the probability in the
first-order case are obtained as well as limits when the samp1e size
tends to infinity. Higher order moving average models and autoregres-
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WHY DO NONINVERTIBLE ESTIMATED MOVING AVERAGES OCCUR?

T. W. Anderson* and Akimichi Takemura

Stanford University . University of Tokyo

1.  INTRODUCTION

In maximum likelihood estimation of a moving average process
noninvertible estimates frequently appear, both with actual data and in
simulation studies. Kang (1975) showed how noninveftibi]ity occurs in
the moving average of order one and indicated why it should be expected
with positive probability. Cryer and Ledolter (1981) and Davidson
(1981a), (1981b) have investigated the probabilities in finite samples.
Sargan and Bhargava (1983) and Pesaran (1983) have found the 1imit of
the probability that a noninvertible value is a local maximum of the
11K?11hood function when the true value is noninvertible. we.develop,
organize, and generalize these results. Some new theoretical results
include: 1) a rigorous derivation of the limiting probabilities that
the likelihood function attains a local maximum at a noninvertible value
for noninvertible (Theorem 4.1) and invertible (Theorem 4.2) processes,
ii) a lower bound for the probability that the 1ikelihood function
attains a global maximum at a noninvertible value (Corollary 5.1),

iii) relations between maximum Tikelihood estimation and several least

*The research of the first author was carried out in part as Wesiey
Claire Mitchell Visiting Professor of Economics at Columbia University
and at IBM Systems Research Institute.



square estimations (Theorem 5.1). Some similar results are obtained

for the moving average process of general order (Section 6) and autore-
gressive and moving average processes of general order (Section 8). It
will be shown that in general the régioh of poséible autocovariances

for a time series of finite length T 1is larger than the region corre-
sponding to moving average processes (T=w) ., This results ina positive
probability that the estimated process falls on the boundary of the region
of moving average processes, namely, the estimated process is noninver-
tible. This point will be clarified by studying the Jacobian matrix
associated with the transformation ffom moving average coefficients to
autocovariances (Theorem 6.1, Theorem 6.2, and Theorem 6.3) and by
interpreting the results from a geometric viewpoint (Theorem 6.4).

The above general consideration is 111ustrafed by the MA(2) process

(Section 7) and the ARMA (1,1) process (Section 9).

2.  THE MOVING AVERAGE PROCESS OF ORDER ONE

The topic we are studying can be indicated by the simplest case,
namely, the moving average of order one, designated as MA(1) . Let

{yt} be a stochastic process defined by

(1) Ve TV tave ;. t=..,-1,0,1,...

where {vt} s a sequence of unobservable random variables with the

properties



(2) Ev,.=0, ev ev,y_. =0, t#s

v? t's

Then {yt} is a stochastic process stationary in the wide sense. If the

v,'s are independent and identically distributed, {yt} is strictly stationary.

If |a]l <1, we can invert (1) to obtain the autoregressive repre-

sentation (of infinite order)

‘ -y 2
(3) Ve Tt W oty s .

The process is noninvertible if o = t1. Then (3) will not converge

and the expression -is meaningless.
The autoregressive representation is important because it is used

for prediction. The prediction of Ye from Yio1e yt-2""' is

.~ ) 2
Yy = € ytlyt-l’ cee TOYe gt ALt e

known as exponential smoothing. Another reason for concern about

invertibility is that iterative computational procedures may not converge
if the estimate is 1. Moreover, an appeal of the MA(1) model is that
it approximates an autoregressive model with coefficients decreasing
roughly exponentially.

The first and second-order moments of the observable process {yt}

can be obtained from (1) and (2). The mean is

(4) ey =0



The autocovariance sequence is

2

(5) e Yt e(v

pravy )%= cl(1+a)) = 5(0)

= Y- ’
€y = elvgrav )ve g+ ave )= oo = o(1)
e Ye¥iop = 0=0c(h), h=2,3,...,

and o(-h) = o(h) . The first-order autocorrelation is

2
a(1) - o o

va(0) vo(0) 05(1-+a2) 1-+a2

(6) o=

The other autocorrelations are 0. If o 1is replaced by its recipro-

cal

(7) . 2
‘ l+(1/oc)2 1+0°

the autocorrelation is unchanged. We can, therefore, restrict o to
-1 <a <1 without Toss of generality as far as first and second-order
moments are concerned. '

We shai] assume {yt} is Gaussian, that is, all joint distributions
are normal. Then the moments (4) and (5) completely describe the process.
We note that o as a function of o 1is monotonically increasing in the

interval [-1,1] and satisfies the inequality

(8) . -

Nof =
IA
©
IA
N



3. MAXIMUM LIKELIHOOD ESTIMATION FOR THE FIRST-ORDER MOVING AVERAGE

The observations on {yt} at T successive time points constitute

a vector
- Y
(8) .Y = (.yl,-..,.y'r)

It is an observation from a normal distribution with mean 0 and

covariance matrix

(9) n =g(0) R ,

where

(10) R=1I.+20A ,

and
0 1 0 0
1 0 1 0

(11) A =% 0 1 0 0
0 0 0 .o 0

Then the logarithm of the 1ikelihood function is



log L = - %-1og 2r - %-109 a(0)

1 -1
-2 109IR] - oy 'Ry

For given p the value of 0(0) that maximizes the 1ike11hoodvfunction

© s

y'R'Yy

(13) 5(0) = ==

Then the Togarithm of the concentrated likelihood function is (except

for constants)

(14) M(0) =-Tog|R| - T Tog y'R™ly
If y#0 , the maximum of M[p(a)] with respect to o exists

[Anderson and Mentz (1980)]. The derivative equation is

(15) M _ dM do . dM 1-0?

da, dp da - d—p (1+G.2)2

I
l
l

The derivative is 0 at o ==*1 [Kang (1975)]. The question is
when is a =1 or -1 a maximum?

If y#0, the maximum of M(p) exists such that B is positive
definite. It will be shown that B is positive definite for -a<op<a,

where -%A<a.< 1. If dM{p)/dp # 0 for all o in the interval

[: %-,%{1, then oo =1 or -1 yieldé a maximum. The maximum can be

1 or -1 if dM(p)/de =0 for some values of © 1in the

]

at o

. 1
interval [7-7,

o=



A local maximum occurs at o =1 if and only if

2 .
dM[pe(a)] . 4 | dM do
(16) 0> 2 T do | dp du
do l a=1
o=1 .
i)’ L om
a2 | & do 442 \
. ) a=1 a=1
- . 1laM
2 dp
because dp/da =0 at o =1 and dzp/dd2 = - %- at a=1., Thus a

Tocal maximum occurs at o« =1 if and only if

(17) g% >0 .

1
=37

To study the probabilities of maxima it is convenient to put the

concentrated likelihood in a canonical form. Let P = (p,.), where
~ Pij

(18) : Pet = ,4;; sin %ff ., s.t=1,...,T .

Then P'AP = D 1is diagonal and the diagonal elements are

~ ~

(19) d, = cos %&%-, t=1,...,T

'[Anderson (1971), Sec. 6.5]. The roots can be visualized by dividing
one-half of the unit circle into T+1 equal parts and projecting the

points on the circumference on the diameter. Then

(20) P'RP = 1

P'RP = 1+ 20D



T
(21) [R[ = 1T (1+2 pdt) \
~ t=1 :
(2 ) IR'l T Z%
2 v y= 1z s
= 1+2 pdt
whefe

(23) 'y =Pz

Since y has the distribution N[Q; 6(0)3] » then z has the distri-

bution N[O, c(O)(If+2 D)1 . The ]ogakithm of the concentrated

1ikelihood function is (except for constants)

2

(o) ;1mu+2d) T]w(g “t
M(o) = - od,) - —_
t=1 t | t=1 1+ Pd

For R to be positive definite, }T+ 2 oD must be positive definite.

Thus 1 + 2 pdt >0, t=1,...,T . These imply

(25) I S 1

i ™
2 cos T 2 cos T+T

The maximum 1ikelihood estimator of o is a solution of the
derivative of the Togarithm of the 1ikelihood function set equal to 0.

The derivative is

2
(26) am _ LM, T T
do 5 T+2 od, ? = 2
t=1 t T zy t=1 (1+2 pdt)
. ; |
(o LF2 04y



The Tikelihood equation is

I 2dtz§ 2d, 212:
(27) T 2 ————= -1y 5q- 2T¥20q. - °©
t=1 (1+2 th) t t t t

The left-hand side is a polynomial in p of degree 2T-3 or less.

4. A LOCAL MAXIMUM AT A NONINVERTIBLE VALUE

The probability of a local maximum at a=1 is

T (T+2)d . +T-1
(28) Pr %M- 17 0 } = Pr 4= t 5 zg >0 1-.
© o= & t=1 (1+d@ f

We have made use of the fact (proved in Al in the appendix) that

oy T, —3
If we Tet
(30) z, = V1+2 odt Xy o
- then X4 has the distribution N(0,1) . We can write (28) as
T (T+2)d, + (T-1) ) )
(31) Pr 4 % — (1+2 pdt)xt > 0
t=1 (1+dt)

As a simple case consider T=2, The concentrated 1ikelihood

function is (except for a constant)
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1
(32) AL L
1 2 2 7
22 4 Z2
(1-0°) !:1_+p o 5 |
) 1
1.2 2
721 + Y 22

where

= - A

Then vy s a monotonically increasing function of o . A small table

of this function is

Tabte 1
P Y
-1 0
N V)
2
0 1
| 73
1 ©

The likelihood function is unimodal (Figure 1). The unique maximum is

at

2,

| %2]

(34) =



11

Figure 1. Likelihood function for MA(1), T=2

Thus the probability of the maximum at o=1 is

(35) Pr{a =1} = Pr{y > ¥/3}
2
X
- 1 1-p
—Pr{_Z— >31+p}'
X2
- 2 l1-q
=] - E—arc tan 3 1+o
%, O=O ’
l =-1-_
2° P72

The probability (31) has been evaluated for different values of o
(or @) by several numerical techniques by Pesaran (1983) and by Cryer

and Ledolter (1981). The Table 2 of probabilities of local maxima was
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given by the Tatter. Because of symmetry, the probability that a=-1
is a local maximum for a process coefficient o is the probability

that «=1 1is a local maximum for a process parameter -a .

Table 2

Probabilities of Local Maxima at 1 and -1

T=2 T=10 T=25
a Tocal max Tocal max Tocal max
1 -1 1 -1 1 -1
0.0 .333 .333 102 .102 .015 015
.2 .389 .282 145,076 .025 011
.4 .440 .244 223 .062 .050 009
.6 .476 .220 .353  .056 .119  .008
.8 .495 .208 .533  .053 319 .008
1.0 .500 205 .63 .053 649 .007

Now we consider large sample size. First we find the limiting

probability of a relative maximum at «=1 when o= %—(a=1).
Theorem 4.1:
T (T+2)d +T-1
; t 2 2 1
Tim Pr h) X, >0 p=Priy" <=}
= ,6575 ,

where w2 is the limiting form of the Cramér-von Mises statistic.
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Proof: For p = %-(31) is

(36) < Pr & - 3 ~ 50
t=1 ™2 o 1y
2
T x T
3 t 1 2
= Pr > <= I X
T(T+2) t=1 1+dt T t=1 t

Let KT be a‘séquence of integers such that KT +0oas T >,

k/T >0, and K%/T > . Then write (36) as

T 3 <2

The two sides of the inequality in (37) are independent. For k=0,

l,cco,KT

(38) 1 +dp_

n
oy
+
O
Q
wn
—]
-+
F e L}
il
—
]
(@]
(@]
w
—4
+
)

"
fuy
1
‘._l
1
nj—
51
Peatmn
—|=
+| +
] =
S
N
+
@
,————~I N
___‘ ;‘
_.I
—
_

|
|
[a)
Y
~
+
—
[h]
+
()
PR
I ~
....l
L UL A
i
e
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Then the coefficient of x5 s

2
(39) 3 _ L1 6(T+) 1L, g1y
’ T2l ) - T T2 2002 7 T

The Teft-hand side of the inequality in (37) has the limiting distribu-

tion of
o x52 2
J=1 7]
where HZ is the Timiting form of the Cramér-von Mises statistic.and

{xj}_ are independent N(0,1) variables.

g Since cose 1is a decreasing function of 8(0<é<w) , for t=1,...,T-KT-1

3 3
(41) T2 (T7,) < T’ T
T(T+2) E. + C0S T
. |
v 22
™Rt

The right-hand side of the inequality in (37) is

\
(42) %}TgKT-l X.% + G (_lz_} = {1 -—KI‘I:iiT_é___l‘ TgKT-lxi ‘e (lz.
‘ t=1 p[KTJ J t=1 p{KT

which has 1 as a probability 1imit. Hence the limit of (37) is
Pr{wz < 1/6} . The value of this by interpolation in the table of the

distribution function given by Anderson and Darling (1952) is .6575. Q.E.D.
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Sargan and Bhargava (1983) have obtained this result by a different
method, Pesaran (1983) has used a somewhat similar method.

We shall now show that if the MA(1) process is invertible, the
probability of a local maximum at a=1 or a=-1 goes to 0 at

least as fast as T " for any n.

Theorem 4.2, Let - %-< p < %— be fixed. Then for any n

n [T (T+2)d, + T-1 »
(43)  Tim T Pr 4Z > (1420d,) xi > O} =0 .
’ Tooo =1 (1+dt)

Proof: Let

, : (T+2)d, + T-1
(44) W = - t >
(1+d,)

3 T+2
(1+dt)2 1+d

Then the probability on the lTeft-hand side of (43) is

T

(45) Pr(z]_ w,(1+20d,) x§ < 0) .
We first investigate the behavior of Wy . Let
( 46) £(x) = 3 _ T+2
(1+X)2 1+x
(T+2)x + T-1

= - . X > =1 .
(1+x)°



16

As x =+ -1, f(x) >« . We have

I\
[a

>0 it x<-15
(47) f) 4 =0 if x=-IL,
T-1
<0 if X > = TTZ s
and
(48) F1(x) = - 6 + 1+2

(14x)° (1+X)2

(1£')3 [(T+2) (1+x) - 6}
X .

= (1+1)3 Ix(T+2) + (T-4)} .
X

This shows that f s decreasing to the left of -(T-4)/(T+2) and

increasing to the right of -(T-4)/(T+2). See Figure 2.

fix)

—t
— o e e e e e e o - b — - —— e

Figure 2.
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Also note that the minimum of f is

-]

-4

(49) . T-4) _ ?(T+2)TI§ + T-1
| -T—*Z-J” T-4)2
==
_ T-4-(T-1) (T+2)2
6
- (T+2)2
12

Separating positive and negative weights we write (45) as

r W, (1420d, )xz:[ }

t(1+2pd < Z
s

Wt>0

- (50) Pr { I W

To bound this probability from abové we try to make the left-hand side

smaller and right-hand side larger. Note that now the weights are all

positive.
2 2
Right-hand side. -We saw that W, 2 - (TIg) . Hence -wt._(Tig) .
Also
(51) : 1+20d, < 1+2]p| < 2 .

t

Hence the right-hand side is bounded from above by

(52) | (T+2)2
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Left-hand side, W, is positive for t=T,T-1,... . By taking
-only a finite number k of terms on the left-hand side we decrease

it; that is ,

2 2
(53) T ow Xp 2 2 -3 (1+ZpdT-j)xT-j

(See A2 in the Appendix for verification that the left-hand side of

(53) contains at least k terms for large T.)

Now we Took at the weights

(54) WT-j(1+2°dT-j) , j=0,...,k-1

Wr_; is decreasing in j ; hence

(55) Wr_5 2 Wo 41 J=0,...,k=1
Also
(56) ' 1+20d.r_j > 1-2]p] .
Hence
57 k-1 2 ~ k-1 2
(57) jEO WT-j(1+2pdT-j)XT—j = wWr_pyp(1-2l0]) = XT.g -

j=0
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Combining these results we find that (50) is less than or equal to

2
2 (T+2)° .2 :
(58) Pr {WT-k+l(1-zlpi)X_I < g XII} .
where X% and X%I aré ‘independent chi-square random variables with ”

“k and T' (= number of wt>0) degrees of freedom. Hence, (58) is

2k X ]
| exfp 31 - %
(59) E 2 C(TIIX_Z e 2 dx
‘11 JO
o x2 K -1
sclEg TIIx2 dx
X1 g

' k
_ 2 \2
= C2 EX%Il;(CT XII) s

where ¢, = 2¢/2 pr2)17t c,=2,/k, and
- 2
(60) . ¢ = (ng) . 1

(1-2[p] Mq_y4q

Then for k even the right-hand side of (59) is

(61) ¢y €

$/2 THT42) .. (T'k-2) .

There are k/2 terms in the product, which is ®(Tk/2) because

T'=6(T) . However
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(62) W = 3 _ T+2
T-k+1 - 2 1+
(I+dy_4q) T-k+1

=o(Th .

Hence cr = @(T'Z) , and c$/2 = @(T'k) . Combining these we have (50)

is Tess than or equal to @(T'k/z) . This completes the proof. Q.E.D.

5.  LEAST SQUARES ESTIMATION FOR THE FIRST-ORDER MOVING AVERAGE

We now consider two kinds of least squares estimators and investi-
gate the relation between these and the maximum 1ikelihood estimator.
As a corollary we shall obtain a lower bound for the probabj]ity thaf
the Tikelihood function attains a global maximum at a=1. Tﬁere are

two ways of parametrizing the process. The parametrization (o(0),p)

has been used above. Another parametrization is (05’“) where
03 = evi is the variance of the disturbance term. Let Q==(1+a2)IT +
20A. Then the logarithm of the 1ikelihood function is

2

| . T T
(63‘) 1ogL-e710g ZTT-E]OQ Gv

-%mngl - —17 y'gly -

Maximizing with respect to 06, we obtain the concentrated 1likelihood

function

(64) MII(a) =-1ogl9] - T log ¥|9-1X .
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Ignoring the determinant term,consider two quadratic forms

(65.) S;{p) = yRYly
a1
(66) Spp(e) =y 0%y
Let &LS,I and &LS,II denote estimators which minimize Silp(a)].
and S;(@) respectively:
(67) m&n Syle(a)] =mln SI[a/(1+a2)] at &LS,I"

m;n SII(a) at aLS,II . -

Furthermore,let &ML denote the maximum 1ikelihood estimator.

Theorem 5.1.

(68) 85,1l = 18yl = fas, ol
and
(69) g1 " 1 = oy =1 = % 5,11 " 1 .

" T _ 1T/2] L 2.2
Proof. Consider 109{5[ = T4 1og(1-+2pdt) =L Tog(1-4p dt) .

Clearly 10918[ is strictly decreasing in p2 . Let SLS,I = &LS,I/
(“355,1)- Then S;(3 g 1)< Sple) for all o. Hence for all |p|<d g I
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we have M(p) 'M(pLS,I) = (10g[5[p=5Ls L Tog[R|) - T[Tog Si(e) -

log SI(SLS,I)] < 0. This implies that [&MLI > laLS,Il . To prove

the second inequality, consider log|Q| . Since [q “14al 4.+ alT

Tog [Q| s strictly increasing in o® . Hence a similar argument as
above yields [y | < I&LS,III . This proves (68). (69) follows from
(68) by virtue of the fact 0 = Pr[ S;(3) = S;(- 51 = PriM(d) = M(- 3]

2 2
= Pris;;(1) = Sep(-1)1 .

Corollary 5.1.

™M

A _ ~ - _ t 2
(70) Pr(aML =1) 2 Pr(ocLS,I =1) = Pr —— 7y 2 0¢ .
(1+dy)

Proof: The first inequality is an immediate consequence of (69). Now

~ . . 1 .
the event U1 = 1 is equivalent to SI(p) > SI(?ﬁ , which is

212: ZE 1 17
(71) 5 > 7 . Vpel}—,—! ,
+ 1+2pdt t 1+dt 2° 2
or
d —_
t 2 , 11
(72) x (T2, )(17a,) %t 2 0, Yoe E 7 ’

The event is

d
t 2 -0 .

(73) min (17250, (T, zy 2

bt
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Since each coefficient in (73) is decreasing in p, the event is

d ﬁ
(74) » -——JL-7? z% >0 . Q.E.D.
t (1+dt)

When T=2 , the lower bound is

(75) Pr Pr

> x
N N P
v
(Vo]
T
+il

o Ff

N N
N PO N
v
Yo
©
1]

2 1-p
1-;arctan3 W

[.204, =0 »

|

The lower bounds of .204 and .333 are to be compared with the exact

1

1 1
3 =7

values of .333 and .5, respectively. Analysis similar to that applied

to the upper bound (i.e. local maximum) shows that for o =-% as To»o

the Tower bound approaches 0.
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Theorem 5.2. aLS,I is biased toward origin. &ML and &LS,II
are consistent.

It will be shown that if o=1 , then &LS,I converges to .829
in probability. Because of this bias Pr(&LS,I =1{d=1) goes to zero
and this fact indicates that this lower bound is not sharp.

To prove the theorem we need the following lemma.

Lemma 1. Let [al <1, |b/<1. Then

™
(76) J(asb) lj 1+a cos 6

T 01+5cosede

- ay 1
_b+(1.. b)

Proof. Differentiating the relation

T '
(77) J’O Tog(a +b cos 8)de = 7 Tog % (a+/a2-b2), a>b=0

‘ [Anderson (1971), Problem 69 of Chapter 6] with respect to a and

setting a=1 we obtain
(78) " 1 do = —T__
0 1+b cos 6 5
/1-b

But (1+a cos 6)/(1+b cos 8) =a/b + (1-a/b)/(1+b cos 8) . The

Temma follows. Q.E.D.
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- Let p* be the true autocorrelation coefficient. Then

7o) 0 T 212: T 1+Zp*dt )
79 S (p) = = =y ot 2
I. t=1 1+2pdt t=1 1+29dt t

where the xt's are independent standard normal variables. We
1 *

consider SI(p) in the open interval - %-<;><-7 . p can be equal

to = %-. Let p be fixed for the moment. Then as T

(80) £l Sy(0)] = ¢

. 1 1+20* cos(ms)
o 120 cos(ms) ds

T 1+2p cos 6 de

m
=1 } 1+2p* cos 6
0

J(2p%32p) .

Furthermore

(81) vards(o)) = L 1 2 )’
ari=S/{p)] == I 2
T N e

14

' 2
2 L 1+20* cos(ws)|
T Jo LT¥20 cos(ms) S

-0

as T-=, Hence for a fixed o, %-Sl(p) converges to J(gp*;zp)

probability. Now note that

in
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2 T 2
- (82) iL?. J(asb) = %—J cos 6(1+a C°§ %) 48 >0 .
~3b 0 (1+b cos 9)

Hence for given a, J(aj;b) is convex in b and has a unique minimum,
b(a); say. By a standard argument then we see that the BLS,I which
minimizes S;(o) converges in probability to %—b(Zp*) . An explicit
expression for the minimum can be obtained by solving é%—d(a;b) =0 .

Now

9 b)) = -2 4+ &
(83) 55 J(asb) 2 + %

Solving this for a we obtain

b3

(84) ‘ a = :
(1-b2)372 + 22 .1

A plot of this relation in terms of a/2 = p* and b/2 = plim SLS IID*

is given in Figure 3.
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plim SLS’I

T-0

Figure 3.

This shows that SLS'I is heavily downward biased. In particular if

o* = %—, then plim BLS,I = .354 (or in terms of o, if a=1 then

plim &g [ = .829) .

As to &LS,II note that SII(p) = SI(p(a))/(1+a2) or
/- 2
(85) s ol = S si(0)
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~(86) Jifash) = 11;1%19_ J(ash) = %{1+ l-ab_,
1-b
Then
' 3 .h) = __Db-a
(87) =5 Jr1(ash) aDZ

Note that <= J;(asb)<0 if b<a and pdq (ash)>0 if b>a.
Hence for given a JII(a;b) attains a unique minimum at b=a, By a
standard argument again, then SLS 11 converges to p* 1in probability

showing that SLS ;7 s consistent (and so is &LS 1)

As to the maximum likelihood estimator consider 1/T times the
concentrated 1ikelihood function in terms of o

1, Q"
(%) FMpp(e) <=3 Toglgl - Tog y'07ly

=-1 -
T 109[9! log SII(a) .
Now Q] = ] , hence 1/T log|Q| <1/T log(T+1)~ 0 as
T > . Therefore the determinant term is asymptotically negligible.
Therefore consistency of &LS,II implies consistency of aML . This
proves the theorem, 0.E.D.

Note that Tog|R| = - T 1og(1+a2)

2)

+ log[Q| . Hence 1ogiBI/T -
-log(1+a“) , which is not asymptotically negligible. This fact explains
the inconsistency of aLS,I .

As Theorem 5.1 shows, &LS,II is more likely to assume the |

noninvertible va1ue. *1 than the maximum 1ikelihood estimator.



This can be also seen by considering the behavior of Syple) at a=xl.

Note that

T a+dt o
(89) SIf(a) = 2 I > 5 Zg

t=1(1+o +2adt)
Hence
(90) s, '(1) 1] Zg 0
. S - = <

I Ztﬂbmt

Similarly SII'(-1)>-0. This shows that a=x1 14s always local mini-
-mum of the quadratic form SII(a) . Ignoring the determinant has a

disadvantageous effect on estimation.

6. THE MOVING AVERAGE OF GENERAL ORDER

The results for the general order of moving average are not as

clearcut. We write the process as

(91) ’ .Yt = Yowt + Ylwt'l + ase + qut‘q ’
where

- 2 _
(92) YO>0, ewt—O, EWy = 1,

and the w.'s are uncorrelated. Then the autocovariance sequence is

g-h
93 = LY s =0,1,...,9 »
(93) a(h) JEO YiYi+h ° h=0,1 q

=0, h=q+l,.-o [
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and o(-h) = o(h) . The covariance matrix of T successive terms in

the process is the TxT matrix

e

a(0) o(1) .es a(q) 0 ces 0
o(1) ~ o(0) ces o(g-1) a(q) ves 0
(94) Ir= a(q) o(g-1) cee a(0) o(1) ees 0
0 a(q) - o(1) a(0) ces 0
0 0 0 0 ... o0) ]

We define

(95) 8,7 ~ {c(0),...,0(q) :I; s positive definite} ,

(96) | Sq,0 = {c(0),...,0(q) :Z7. s positive definite ¥T'=>q+1} .

A vector o = [0(0)s...,0(q)]' ¢ & if and only if there exist real

q,®
YO""’Yq such that (93) is satisfied. Alternatively, g egh o If
and only if
g ixh
(97) 2nf(x) = . a(d)e =0, VY
h=-q ’
Clearly g

q’q+1 ng,q+2 Dees ng .
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An alternative set of parameters consists of Yo and 61,...,eq,
the roots of

98 69 +v. 6%l 4. 4y =0
(98) g Y1 Yq

There is no loss in generality in requiring [eil <1, i=1,...,9 .
[See Section 7.5.2 of Anderson (1971).] A moving average process is

invertible if [6.] <1, i=1,...,9. It is noninvertible if o] =1

for at least one value of i . )
The derivatives of the loglikelihood function with respect to

(99) ( dlog L dlog L
dg 77 8y
L q _ -
30 (0) 35(0)
3
Yy - g

()

) )
let G = (5(0),...,5(q)) " satisfy
(
100 - 1 dlog L dlog L
(100) 0= | SetoT »+++> solay )

If there is no 3ezgq _ » ‘then we must have [J| =0 for Y=Y ,

]

where
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(10) 1- g

is the Jacobian matrix and ¥ = (?0,...,$q) satisfies (99) set equal
to 0. We shall show that in this case ¥ = (?0,...,?q) corresponds

to a noninvertible process.

Theorem 6.1. Let el,...,eq denote the roots of (98). Then
q q
(102) |9 =237 1 (18, @ (146,) T (1-8.6.) .
- i=1 i=1 i< J

We see that [J| vanishes if and only if the characteristic poly-

nomial has at least one root of absolute value 1. Hence we have

Corollary 6.1. The Jacobian |J] vanishes at y = (yo,...,yq) if

and only if the corresponding processA(91) is noninvertible,.

Proof of Theorem 6.1. The Jacobian is

50(0) 50 (0) ZYO ZYl .es 2y
g T

Y Yoty Y
30(1)  30(1) 1 0’2, q-1

(103) [3]=| o ! =l v e Ygep
30(q)  3a(q) Ygo1 Y T
3YO Syl cee q-1 q 1
Yq 0 Y0
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YO Y]_ . Yq
Y1 Yo*Y2 Yg-1
= 2 . :
Yq_l Yq .e Y].
Yq O en YO
1 oy eee aq
aq 1+oc2 aq-l
_ ~.q+1 . . .
- ZYO : ’
aq_l aq oq
0 . 1
%q

where a; = Yi/yo , 1=0,1,...,q . We can write

04 q - - - .
(104) Lhogx +... 4 X (1 elx) ... (1 eqx),

that is, a,=- 28, , a, = I 0.6. , etc. Then the last determinant
1 i 2 i<y 13
becomes a polynomial in the ei's when the ai's are expressed in

terms of ei's .

Now we multiply row i by 81 + 811 and add to row 0,

i=1,...,9 . Then row 0 becomes

] i, 3 - -1 ] i -
(105) T a0l + % w87, 87° I a8y +6, % a8 ,
sz V1045 L 1 5y 771 Liggtl
q - q ‘
vee, 879 1 a0l +689 T a8
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This follows from the evaluation of the j-th column:

-0 1,,-1 2, =2
(106)  a,(6]s0] )+ oy +ag ) (0] +671) # (oy p+ay o) (67 +67%) + ...
q kI B PRI, B R TS, B R
= I o (679 40y =07 5 ae) +0d 1 a6
j=g 11 1 1o 11 129 171
. - q 3 .
However Z?=O a1611 = elq iio aie? "= 0 because 9, 1s a root of the

characteristic polynomial. Hence, the first row becomes

(107) P el el T L GRS \
520 1 1> 71 i=g 1 1 1 i=0 1 1
Hence
g aei=(1-e%(1-ee) (1-6.6)

is a factor of the determinant.
The above operation can be done with the other ei's. Hence we

see that Hi<j(1"eiej) is a factor of the determinant

_119
(109) 1 oy e 0 1 oo (-1) e,
oy 1+oa2 .o aq-l -zei :
. - = -Ze .
-1149
% 0 . 1 (-1) nei ves 1

Now consider the degree of this polynomial in the 61'5 . The highest

term comes from

(110) r ag+1 o e?*l
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. . _ . - q+l
The highest degree term in Hisj(l eiej) is = Hisj eiej + L0007 .

These agree. Hence |[J] s cyg+1 Hisj(l -eiej) for some constant c .

Considering the constant term we obtéin c=2. Hence

(111) 3= 23" 1 (1-ep0))
- i< J

=2Yqﬂ‘ m(1-0.) m(1+6,) I (1-6.8;) £.D

0 1 3 1 J ° Qc el e

i<j

Now let us find the null vector of the Jacobian matrix. Q when it

is singular. e have shown that "[J| =0 if and only if (YO""’Yq)
corresponds to a noninvertible process. The proof gives an explicit

expression of a null vector 7 such that
(112) . n' J = o' .
Suppose that vy = (yo,...,yq)' corresponds to a noninvertible process.

Then there exists a frequency v(0<v<w) such that the spectral

density is Zero at v ; that is

I
‘Mo

..<

®

(113) 2nf(v)

a(0) +25(1) cos v + ...+ 20(q) cos vq
0

It follows that z9 . v. e™ =0, and 19, v, e™ =0, Let
: =0 'j j=0 *J

J
8, =e!Y in the proof. Then ei-+ei3 = 2 cos jv. Let
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1 . -1 q -q
(114) (1, 8, + 81 5 eees 6 + 6"

3
[}

1

(1, 2 cos v,..., 2 COS qu) .

Then the -above proof shows that

r Y [N ] w
YO»’_YI’ Yq
11 Yg-1
(115) (2, 2 cos v, ..., 2 cos qu) . .
L Yq YO
J
[ ’2 2 ’2 ]
23527 Y
M Yq-1
= (1, 2cos v, ..., 2COS qu)| . .
Yq YO J

=nJ=O'

Therefore we have proved:

Theorem 6.2. Let YO""’Yq correspond to a noninvertible process.
Let v be such that the spectral density f(v)=0. Then

n'=(1, 2 cos v,...,2 cos qu) is a null vector (from the left) of the

~

Jacobian matrix J .
This theorem can be given an alternative proof as follows.

Let

(116) 2rf(v; ap,....a) =(a§-+... +a§)-+2(a0a1-+... +aq_1aq) cos v

q

+...+2 a,a cos(vq) .

q
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Then f(v; ao,...,aq)'zo for all (real) ag,...,a By assumption

g
v YO""’Yq) =0, Let a; =Yi""’aq:=Yq be fixed and consider

flvs ag> Yl,...,yq) as a function of aj. It attains a minimum (=0)

at an =Yg - Hence

of . _
(117) 'a—a'o" (\)s YO’Yl"“’Yq) - 0
This gives
rZ'YO
71
(118) (1, 2 COS Vyeuus2 COS QU)| =0.
. Tq

Similarly considering YiseeesY in sequence we obtain

q
(119) (1, 2 COS Vyueuas 2 COS QV) J =9' .

This completes the alternative proof.

Now recall the likelihood equation:

5log L dlog L At
(120) E- ORI - o SRS

If we assume that the rank of J 1is q, then the null vector is

unique up to a multiplicative constant. Hence we have:
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Theorem 6.3. Suppose that the likelihood equation §%£¥LJ;,',.,§J§$_£.
0 q

(0,...,0) has a noninvertible solution Tgs++esYq and the rank of

J is q . Then therg exists a unique ‘v;zo such that the spectral

~

density is zero at v and

(121) ( 9%%%@%-,..., é%g%a%-] = c(1, 2 cos v,...,2 cos qu)

for some ¢ ,

The rank condition of this theorem is a natural one because it corre-
" sponds to smoothness of the boundary of the invertibility region. This
can be illustrated by considering the MA(2) case. In terms of

(p1s0,) the region has a smooth boundary except for the point (p.,ps)
1°72 1°%2

= (0, --%) . See Figure 5 of the next section. Consider the Jacobian

matrix
( ZYO 2Y1 2Y2 ]
(122) Jd =1 vr o Yoty v
Yo 0 Yq

J is of rank 1 if and only if row 1 is proportional to row 3 and row 2

-~

is proportional to row 3. But this implies Zyl =0, Yoo = 0, or

Y| = 0, Yo = =Yg - (Conversely if Yy = 0, Yo = =Ygs then J is of

rank 1.) Hence this case corresponds to (pl,pz) = (0, - %Q . For

other boundary points the rank of J=2,
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Geometric interpretation.

The above results can be interpreted from a geometric viewpoint.
Consider the set 8q, again. This set is convex. This follows from
the fact that (o(0),...,0(q)) € 8q,
... +20(q) cos(gr) = 0 for all A . Let g(O) =(co,...,cq) =(°O(X)""’

if and only if o(0) +20(1) cos A +

cq(y)) be a boundary point of g, _ and let P be a supporting hyper-

q
plane at g(o):

(123) (0(0) = 0%) cq+ ...+ (o(a) =o%) ¢ <0

for all (o(0),...,0(q)) €8, - See Figure 4. c' =(c0,...,cq) is the

]

Figure 4.
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0

normal vector to the supporting hyperplane. Actually o cO-F...-+oqc

q
= 0 because 8q, is a cone. This can be verified-by letting (c(0),
cees0(@)) = £(c%,...,0%) and considering (123) for t>1 and O<t<1.

Let Yl""’Yq be fixed and Tet Yo be changed by a small amount

0 _ 30(0) q _ da(q) .
&vy - Then o(0) -g° = —5;6—-AY0,...,q(q) -g' = '§7§_'AYO . Substi

tuting this into (123) we have &y Z?=O ao(i)/ayo +c;<0. Ayy can
be positive or negative, hence Z?=O ac(i)/ayo ° ¢; =0 . Namely the
infinitesimal displacement of (0(0),...,0(q)) 1lies in the supporting
hyperplane. This consideration can be applied to Y{seeesY, @S well.

q
-In matrix form we then have

(124) ¢’y =0

Namely the normal vector to the supporting hyperplane is a null vector.

Hence under the same assumptions of the last theorem we have

Theorem 6.4. Let the assumptions of Theorem 6.3 hold. Then there
exists a unique supporting hyperplane at the boundary point oo and
the gradient of Tog L with respect to o¢(0),...,0(q) is proportional

to the normal vector of the hyperplane.

This theorem implies that if the boundary point o corresponds to
a relative maximdm of the likelihood function, then the 1ikelihood in
terms of (0(0),...,0(q)) dincreases most steeply in the direction

orthogonal to gq -
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7. THE MOVING AVERAGE OF ORDER 2

The results of the previous section can be illustrated by consider-
ng the MA(2) process. The regionAof (pl,pz) corresponding to the
MA(2) processes is given in Section 3.4 of Box and Jenkins (1976). It

js the intersection of 8 o of the previous section and the plane
2

5(0) =1 . The boundary is given by p2=p1-%, p2=-p1-%—, oy +8(p, -
1,2 _ 1 .
) = i corresponding to root -1,1, and two complex conjugate roots

of absolute value 1, respectively. For T=3, 23 is positive semidefi-

nite if and only if -1 Spl‘sl and p%:s(1-+p2)/2 . For T=4, 4

is positive semidefinite if and only if
P PRI LS S

For larger T, explicit expression for the positive definiteness of
§T seems difficult to obtain. In Figure 5 boundaries corresponding to
T =3,4,5,6,» are plotted. For T = 5,6 the boundaries are computed
numerically. We see that for finite T the regions are strictly

larger than the region arising from MA(2) processes (T=«) . For

pp = 0 , the boundary points are the same as for MA(1) case, namely

1

o +1/2 cos(TgT) . For pq= 0, the explicit expressions of 1imits
can be obtained as follows. If p]'=0 , then Y1s¥3sYgsee- (odd
indices) and Yps¥gsee- (even indices) are uncorrelated and each sub-
series forms a MA(1) .process with parameter o, . Hence % is
positive semidefinite if and only if submatrices for even indices and

odd indices are both positive semidefinite. It follows that the limits

are given by
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I=3

Figure 5.
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.

= +

P2 2 cos T
[(T+1)/2] +1

(126)

-]

where [(T+1)/2] equals T/2 if T 1is even and (T+1)/2 if T is
odd. '

Detailed analysis of full likelihood function of the MA(2) process

seems to be difficult to carry out.

8. THE AUTOREGRESSIVE MOVING AVERAGE MODEL

The ARMA(p,q) model is

p q
(127) OBy Yei = I 0 Ve oo,
' j=0 J 7t 3=0 J t-J

where 0y =Bg = 1, and {vt} is a sequence of independent, identically
2_ 2

distributed random variables with evt:= 0 and 6vt==cv . Let
(128) ; :
u = .V _4 = Y-W i s
when Y5 TO%5 j=0,1,...,9, and wt==vt/ov . The autocovariances of

the unobservable {ut} process are

g-h
(129) g{h) = T v,

h=0,1,-..,q °
u =0

Yj+h b

0, | h>q
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Let B = (Bl,..;,Bp)' . O, = [GU(O),...,ou(q)]‘, and i = (YO,...,Y ).

q
Alternative parametrizations are (@,y) (or equivalently B, a,
and cv) and (§,gu) .

The derivatives of the likelihood function with respect to the

components of B and v are

~ ~

I 0
(130) aaL , ;L o 3L oL } ,
|8 e 0 J

where gu = (Bgu/az') . As in the case of MA(q), if there is a
solution of the Tikelihood equations for 8 and Y such that the
corresponding vector (aL/ag‘ . aL/ag;) is not 9' » then the matrix
on the right-hand side of (130) must be singular, that is, Igu[ =0
at this vector i . This solution is noninvertible. The analysis of

the MA(q) model can be carried over to the ARMA(p,q) model.

9.  THE AUTOREGRESSIVE MOVING-AVERAGE PROCESS OF ORDER 1 AND 1

The considerations of the previous section can be illustrated by
ARMA(1,1) process. Let Yyseees¥7 be T successive observations

from an ARMA(1,1) process, that is, the yt's satisfy

(131) Vet BYpg T tave g S ug
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2

Let E(u%) =0, and p = a/(1+a2) . In terms of the parametrization

"(B,p,cg) the autocovariances of the process are given by

(132) o(0) = o2 120
1-B
2 .
- 2 p+87p-B
a(l) = 9y 1—2—' s
-8
o(h+1) = -go(h) , h=1,2,... ,
o(-h) = o(h) , h=1,2,... .

To investigate the T-dimensional covariance matrix L1 it is useful

“to consider the following transformation:

B ( V! 1
[ vq 1 ¥y
(133) = .
u3 R 1 y3
u 81
LTy JUIT

Using cov(yl',uz) = cov(ul-ByO,uz) =cov(u1,u2) = poﬁ, var(yl) =

05(1-289)/(1-52) , we obtain

Uy 8 1 1 B
(134) Var P It 1
. L ,
u
k T 7 L. oY (
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[ 1-280 1
i P
1-8
2 1
= of o . .
1 o
\ p 1/

Hence ET‘ is positive semidefinite if and only if the matrix on the
right-hand side of (134) is positive semidefinite. Now define the

determinant of the TxT matrix

(135) D =

Then the determinant of (134) is 05 times

1-220 0 1-28p (1'82)0
1-8
0 1
(136) o o =4 :
. 1- 1 0
1 o
o 1
o) 1
_ 01 22
= 'i':gz (DT' ZBQDT_l +B P DT-Z)

From Lemma 6.7.9 of Anderson (1971) we have
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T+ T+1
(137) 0. = 1 { 1+/1-40° ] _ [ 1-/1-40° }
L

T — 2 2
/1-4p

Here we are interested in the case |p| z% , because if |po] <% then
the covariance matrix is clearly positive definite. Let p = %— with-

out loss of generality. Now

1e/1-40? _ 1+i/Ao2-1 14i/402-1

' ' .. +i6
(138) 5 = > =0 T = p(cos 6+ sin 8)=pe” 7,

-1

where 6 = tan 4p2-1 . Then

(139) [ 1+/1-80°

k
J = pk(COS ke +i sin k8) .

2
Therefore
1 _ 2 2
(140) Dy - 280 Dy_; +8%° Dr
1 T+1 2 2 T-1

=—=[p 21sin(T+1)0- ZBppTZ isinTe+Bp p 21sin(T-1)8]

- 20 [sin(T+1)6 - 28 sin To +8% sin(T-1)8] .
4o"-1

g

Hence the determinant is zero if and only if
(141) 82 sin(T-1)6 - 28 sin To +sin(T+l)8 = 0 .

Solving (140) for B we obtain
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sin 76 £ sin 8
sin{T-1)6

(142) g =

Considering 6 = 0 (p21/2) we have B =(To6)/(T-1)8. This has to

be less than 1. Hence we take the negative sign. So

(143) 8 = sin T8 =sin 6

sin(T-1)6
Using sin T8 -sin 6 = 2 sin T-lg cos Tzile , sin(T-1)8
- T-1 T-1

= 2 sin ——2——6 cos Te , We can write

(144) 8 = coS T—;i 8/cos Té—l

Equations (143) and (144) give the boundaries of the region I7: posi-
tive semidefinite in (p,B)-plane. For B=1 we have 6=0 or p=%—.
For £=0 we have MA(1) process and we obtain p=1/2 cos T:-r_l . This
can be verified by setting cos T—Z—l- 6=0. For B=-1 we have
cos I%—l- 9 = l-cos Ié—l 6 or %6 = 121 . Hence e=-T-Tr- or p=1/2 cos(n/T).
A plot of t‘he boundaries is given in Figure 6.

For p<0 the regions are symmetric about the origin. Again we
see that for finite T the regi‘on is strictly larger than the region

corresponding to ARMA(1,1) processes (T=o),
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Appendix A

_ 1d
Al Ieas T 7 109[R|
Since Tlog|R| is continuously differentiable in p we can let o
approach 1/2 from above. Then as in Section 9

T sin(T+1)6

lBl 'sin B

1]
[we)
~—

- T sin(768) cos 6 +cos(T6) sin @
P sin 9

=p Ccos 6 Dy, + pT cos(Te)
= %—DT_l + o cos(To)

where © = tan'l[(4p2-1)1/2] and cos 6-=1/20 . Hence

dh _1d T-1 T o ds
Y DT =73 DT-l + Tp cos(T8) -To' sin(T6) R
Now
-d_e = 1 . 80 = 1 zp = 1
P 144021 2040%-1)Y2 202 (402 1) 2,2 gin g

Letting o0-+1/2 (hence 6+0) we have

- T(r-127 ™

o]

- d
do P =7 do P11
p=1/2 p=1/2

or
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-2 T(T-1) ,

ar 7 %414

where ar = 2T(d/dp)DT p=1/2 *

Hence
T
ar =-2 ¢ t(t-1)=-(2/3)(T+1)T(T-1) .
t=1
Also .
=T
.DT pél/Z - ? (T+1)
~ Combining these we obtain
T 4% 101
g=1 1t 3

A2  We have to check that for T sufficiently large the left-hand side

of (53) has at least k terms. Now Wy > 0 1is equivalent to

1-1
PR = Rt
TR £
<
1 2
= -(1-7)(1-5+ )
3 1
= -1 +=+0(=)
T T2

However,
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d
2(T+1)2

T-j

Hence we see that the left-hand side contains about VT terms.
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